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(a) Brute force ray marching, 5h (b) Decoupled ray marching, 4min (c) Indirect lighting, 10min (d) With reflections, 2min

Figure 1: Ray traced heterogeneous volume densities (roughly 100 steps used in all images)

We describe the integration of heterogeneous participating media
into our production ray tracer. We specifically focus on the problem
of computing the lighting without incurring a quadratic number of
shader evaluations. The main difficulty in rendering volumes comes
from the inability to analytically importance sample the transmis-
sion term:

τ (t) = e
−

∫
t

0

(σs(x)+σa(x))dx (1)

The classical ray-marching algorithm [Perlin and Hoffert 1989] has
a long history of use in production rendering due to its simplicity.
The volume equation is solved by marching down the ray in fixed
or adaptive steps, evaluating the lighting at each sample. Unfortu-
nately all shadow rays must themselves be ray marched, leading to
a quadratic number of shader evaluations.

The typical solution to this problem has been to employ light
caching techniques such as deep-shadow maps [Lokovic and Veach
2000]. Unfortunately these techniques require multiple passes, and
are prone to many sources of artifacts. In contrast, our method re-
duces the quadratic complexity without giving up the benefits of
accurate ray traced lighting.

Ray-marching Revisited We begin by observing that for homo-
geneous media, unbiased solutions are practical. This is due to the
fact that equation 1 simplifies to:e−t(σs+σa) which can be both
evaluated and sampled analytically, leading to simple Monte Carlo
solutions. These benefits remain even if we confine the homoge-
neous media to a region of space, only the normalization constants
change on the associated probability density function (PDF).

Our key insight is to observe that we can reformulate the taskof
ray-marching as transforming an unknown, spatially varying vol-
ume into a list of piecewise homogeneous segments. This gives us
access to inexpensive analytical formulas for evaluating and sam-
pling equation 1 at arbitrary points.

Our algorithm begins by marching down the ray in fixed (or adap-
tive) steps. We pick a random sample point within the segmentof
each step and run the volume shader. The volume propertiesσs

andσa are recorded into an array from which we can build a piece-
wise linear PDF proportional toσs(t)τ (t). We can then perform
light sampling outside the ray-marching loop (hencedecoupled) by
choosing positions along the ray using this PDF. For each light sam-
ple we trace shadow rays to the lights, which in turn runs the first
half of our algorithm to estimate the transmission factor (traditional

ray marching). As the lighting calculations are decoupled,we can
also evaluate indirect lighting recursively at a reduced cost.

Time Complexity If we assume that ray-marching requires
O(N) shader evaluations per ray, the traditional ray marching al-
gorithm performsO(N2) shader evaluations. Our method only re-
quiresO(N + LN) evaluations (L being the number of light sam-
ples) which is a substantial reduction whenL ≪ N . In fact we
typically useL = 1 as we need to trace many primary rays for
smooth anti-aliasing and motion blur.

Bias Naturally our method introduces some bias, however it is
explicitly controlled by the step size parameter and can be made
arbitrarily small. In fact, as the step size approaches the Nyquist
rate of the volume, our algorithm converges on a ground truthresult.
In our implementation, the shader controls how many ray-marching
samples are required within the bounds it occupies along theray to
allow for volumes of different frequency contents to be mixed in
the same scene. We also point out that the homogeneous limit case
is handled without bias as a single ray-marching sample captures
the volume properties exactly.

In contrast to unbiased integration schemes [Yue et al. 2010] that
use rejection sampling to invert equation 1, we do not require any
knowledge of upper bounds on volume properties which is essen-
tial to deal with procedural and out-of-core volume representations.
Moreover, since our PDF is proportional toσs(t)τ (t) instead of
τ (t), it does not waste any samples on regions that do not scatter
light.
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